

ALD Capabilities at MRC UT Austin

Marylene Palard *, J. H. Yum, T. Akyol, B Fallahazad, E Tutuc, J Lee, S Banerjee

*Research associate, MRC NNIN coordinator

ALD reactors at MRC – Savannah-100

Savannah-100 Cambridge ALD (2007)

Precursors – as Nov 2012

0= water 1= trimethyl Al (TMA). RT

2= MgO- amidinate (2-28-10) 3= BeO (Liquid 2-6-12) Pattent 4= tetrakis(dimethyla mino) Hf TDMHf. 115C. -0.97A/cycle

5= ammonia gas

N2 carrier

ALD reactors at MRC – Savannah-xxx

Savannah Cambridge ALD (2009)

0= water 1= Al –
0.92A/cycle 2= Hf 3= La -150C
Pure La2O3 absorbs moisture
quickly, so LaAlO is prefered.

4= Zr. 73C - 0.9A/cycle ZrO2 did not form good interface with III-V. ZrAlO was prefered instead.

5= ammonia

N2 carrier

ALD reactors at MRC - Fiji

Fiji ALD Cambridge (2010)

Precursors:

0= water 1= Al 2= Ti (TDMAT) - 75C

3= Hafnium (TDMHf) -115C

4= Empty. (Set up for low vapor pressure precursor, w/ extra carrier gas input)

- ICP RF plasma assisted source gases: Ar, N2, H2, NH3, O2
- Ozone generator
- Ar carrier

Al_2O_3 on Si

- o Precursors: H₂O/TMA
- O Chamber temperature: 250/200 °C
- Substrate: lightly doped p-Si (10-20 Ω·cm). HF cleaned

Al₂O₃ on Si: Dielectric Constant (k)

 Al_2O_3

Lightly doped Si

Metal

Parameter	Value
Dielectric constant (k)	8.4
C _{it} (μF/cm²)	4.14

Al₂O₃ on Graphene

B. Fallahazad et al, Appl. Phys. Lett. 100, 093112 (2012);

- ➤ A nucleation layer is required for ALD of dielectrics on graphene
- ➤ The nucleation layer has a significant impact on the dielectric constant and morphology of the subsequently grown ALD dielectric

HfO₂ on Graphene

TEMAH: Tetrakis(EthylMethylamino)Hafnium

Top dielectric stack

- Interface: Oxidized AI (15Å)

- Precursor: H₂O/TEMAH

- Chamber Temperature: 200/200 °C

Dielectric Constant (k): 16

ALD of AIN?

- o Precursors: TDMAA/Ammonia
- o Temperature: 200-300 C
- Deposition rate: very low (less than 0.1Å /cycle)
- Deposited film very leaky

TDMAA: Tris(DimEthylAmido)Aluminum

ALD BeO precursor synthesis

Dimethylberyllium (solid)

Diethylberyllium (liquid)

Grinard metathesis:

 $BeCl_2 + 2CH_3MgBr \rightarrow Be(CH_3)_2 + 2BrCl$

Ether (solvent): $C_2H_5OC_2H_5$

(very stable liquid)

- ☐ ALD BeO precursors were successfully synthesized.
- ☐ After multiple rounds of sublimation, ether impurities were much reduced.

Successful Deposition of ALD BeO

(a) Raman spectrum, (b) XPS of Be 1s, (c) XPS of C 1s.

- ☐ From Raman and XPS, ALD BeO film is successfully deposited.
- □ ALD BeO shows slightly higher carbon impurities due to low quality of synthesis.

TEM images of ALD BeO Film

- ☐ As-grown ALD BeO on Si and GaAs shows high crystallinity.
- ☐ ALD BeO shows a relatively distinct interface.

TEM images of ALD BeO Film

ALD BeO on Ge substrate

- ☐ As-grown ALD BeO on Ge shows high crystallinity.
- ☐ ALD BeO shows a relatively distinct interface.

Fundamental electrical analysis for MOS capacitors

TaN/BeO/p-Si (MOS) structure

- (a) Physical thickness versus EOT without/with PDA, (b) Frequency dispersion and (c) Hysteresis.
 - □ALD BeO shows negligible frequency dispersion and hysteresis.
 - The dielectric constants of the BeO film are k = 6.5 before annealing and k = 6.8 after annealing.
 - \Box The Al₂O₃ dielectric constant changes significantly by annealing, from k = 6.4 to 7.2.

Si MOSFETs characteristics

NMOSFETs I_d-V_g characteristics of SiO₂/HfO₂, Al₂O₃/HfO₂, and BeO/HfO₂ gate stacks.

- \square With the slightly lower EOT, the BeO/HfO₂ stack exhibits more positive V_{th} (0.66 V), higher drive current at Vg = 2 V
- ☐ From literature, interface charge (including interface trapped charge and interface fixed charge) is "+" value. So BeO IPL may reduce the interface charge and result in a higher threshold voltage.

Si MOSFETs characteristics

I_d-V_d characteristics of SiO₂/HfO₂, Al₂O₃/HfO₂ and BeO/HfO₂ gate stacks.

 \square BeO/HfO₂ gate stack shows significant increased drive current compared to SiO₂/HfO₂ and Al₂O₃/HfO₂ gate stacks.

Conclusions

BeO vs Al₂O₃ vs HfO₂

	BeO	Al_2O_3	HfO ₂
1.Thermal stability	Better	Middle	Poor
2. E _g & ΔE _c	Larger (10.6eV, 2.3eV)	(8.5eV, <1.9eV)	Lower
3. Diffusion barrier	Better	Middle	Poor
4. Self-cleaning effect	Better	Middle	Poor
5. Structural defects	lower	middle	Larger
6. Orbitals	No filled "P" orbital	"P" orbital	"d" orbital
7. Thermal conductivity	High	Poor	Poor

Energy bandgap $\uparrow \rightarrow$ Quantum tunneling current $\downarrow \rightarrow$ Defect generation \downarrow Cation and Anion similar \rightarrow Stacking fault energy $\downarrow \rightarrow$ Intrinsic defects \downarrow Temperature $\uparrow \rightarrow$ Phonon scattering $\uparrow \rightarrow$ Thermal conductivity \downarrow Bonding distance $\downarrow \rightarrow$ Orbital splitting $\uparrow \rightarrow$ Energy bandgap \uparrow (10.6eV) Bonding distance $\downarrow \rightarrow$ Binding energy $\uparrow \rightarrow$ High melting point