

Beyond A/B/A/B... Unorthodox Pulse Sequences in Atomic Layer Deposition

Jeffrey W. Elam Energy Systems Division Argonne National Laboratory Argonne, IL, USA

2012 NNIN ALD Symposium Cambridge, MA, November 30, 2012

Outline

- Introduction
 - Argonne National Laboratory
 - Traditional ALD, A/B/A/B...
- Beyond A/B/A/B...
 - Stripe Coating
 - Surface Poisoning
 - Precursor Synergy
 - Nanobowls
- Conclusions

Argonne National Laboratory

- Founded in 1943, designated a national laboratory in 1946
- Managed by The University of Chicago for the U.S.
 Department of Energy
 - More than 2,800
 employees
 and 5,000+ facility users
 - 1,500-acre, wooded site in DuPage County, Illinois
 - 25 miles southwest of Chicago, Illinois

Argonne User Facilities

Leadership Computing Facility "Blue Gene" Advanced Photon Source

Center for Nanoscale Materials

Argonne Tandem-Linac Accelerator Facility

Electron
 Microscopy
 Center

Argonne Atomic Layer Deposition Group

- Develop ALD technology
- Apply ALD to emerging applications:
 - Solar Cells
 - Large Area Photodetectors
 - Lithium Batteries
 - Catalysis

Precise coatings on porous templates:

Components of Argonne ALD Systems

Traditional ALD, A/B/A/B...

Self-limiting A/B/A/B... surface chemistry

- thickness control
- composition control
- uniformity
- conformality

- pinhole-free
- Iow-temperature
- high purity

Many Examples of A/B/A/B...

Puurunen, J. Appl. Phys. 87, 121301 (2006)

!	Material	Reactant A ^a	Reactant B	Refs.
Boron				
	B ₂ O ₃	BBr ₃	H ₂ O	85
	BN	BCl ₃	NH ₃	158
		BBr ₃	NH ₃	159
	B _x P _y O _z	B(OMe) ₃	POCI ₃	88 and 89

$\frac{PbI_2}{Pb(OAc)_2}$ $\frac{Pb(O^{t}Bu)_2}{Pb_4O(O^{t}Bu)_6}$ $\frac{Pb_4O(O^{t}Bu)_6}{Pb(tbd)_6}$	H ₂ S H ₂ S H ₂ S H ₂ S H ₂ S	1083 1083 1084 1084	\$ \$ \$
$\frac{Pb(OAc)_2}{Pb(O'Bu)_2}$ $\frac{Pb_4O(O'Bu)_6}{Pb_4O(O'Bu)_6}$	H ₂ S H ₂ S H ₂ S H ₂ S	1083 1084 1084	\$ 4 4
$Pb(O'Bu)_2$ $Pb_4O(O'Bu)_6$ $Pb(tbd)_6$	H ₂ S H ₂ S H ₂ S	1084 1084	l l
$Pb_4O(O'Bu)_6$ $Pb(tbd)_6$	H ₂ S H ₂ S	1084	ł
Pb(thd).	H.S	1002	
r b(ulu) ₂	1120	1083 and	1084
$Pb(dedtc)_2$	H_2S	1083 and	1084
Bi[N(SiMe ₃) ₂] ₃	H ₂ O	1085	1
),	$Bi[N(SiMe_3)_2]_3$	B_x $Bi[N(SiMe_3)_2]_3$ H_2O	$B_x = Bi[N(SiMe_3)_2]_3 = H_2O$ 1085

8

Beyond A/B/A/B... - Blended Materials

- $TMA + H_2O \rightarrow Al_2O_3$
 - $DEZ + H_2O \rightarrow ZnO$

Laminates

Beyond A/B/A/B... - New Processes

Electrochemical and Solid-State Letters, **9** (7) F64-F68 (2006) 1099-0062/2006/9(7)/F64/5/\$20.00 © The Electrochemical Society

Effect of Surface Reactive Site Density and Reactivity on the Growth of Atomic Layer Deposited WN_xC_y Films

A. Martin Hoyas,^{a,b,z} C. M. Whelan,^{a,*} J. Schuhmacher,^a J. P. Celis,^c and K. Maex^{a,b}

^aIMEC, BE-3001 Leuven, Belgium

^bDepartment of Electrical Engineering, Katholieke Universiteit Leuven, BE-3001 Leuven, Belgium ^cDepartment of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, BE-3001 Leuven, Belgium

■ A/B/C... ■ B(C₂H₅)₃/WF₆/NH₃ → WN_xC_y Beyond A/B/A/B... - New Processes

Growth of SiO₂ at Room Temperature with the Use of Catalyzed Sequential Half-Reactions

Jason W. Klaus, Ofer Sneh,* Steven M. George†

SCIENCE • VOL. 278 • 12 DECEMBER 1997

A+C/B+C...

• SiCl₄(Pyridine)/H₂O(Pyridine) \rightarrow SiO₂

Beyond A/B/A/B... - What Else Can We Do?

1) Stripe Coating

2) Surface Poisoning

3) Precursor Synergy

4) Nanobowls

1) Stripe Coating

- pattern layers in 3-D, nanoporous materials

Joseph A. Libera

• J. W. Elam, J. A. Libera, P. C. Stair, and M. J. Pellin, Appl. Phys. Lett., **91** 243105-1 – 243105-3, (2007).

Introduction

Methods exist for selective ALD on planar surfaces

E. Färm et al, CVD 2006, 12, 415–417

J. P. Lee et al, JACS 2004,126, 28-29

Can we pattern ALD layers inside of porous structures?

Application - Control of sequential catalytic reactions:

Patterned ALD Layers Inside of Porous Structures

Anodic Aluminum Oxide (AAO) Membranes

- Electrochemical etching of aluminum metal
- Membrane thickness L=75 μm
- Nanopore diameter d=50 nm
- Aspect ratio L/d = 1400

ZnO Stripes in AAO

- 20 cycles TMA-DEZ-H₂O
- Vary TMA exposure time

TMA Exposure

Time:

ZnO stripe position is diffusion-controlled

Monte Carlo Simulation of Stripe Coating

- 1D random walk of hop-length d
- Only model DEZ/TMA half-reaction
- Model trajectory until DEZ/TMA reacts (S=10⁻³) or leaves tube

TiO₂ Stripe Coating in AAO

TMA/TiCl₄/H₂O

TiO₂ stripe formed

Multiple Magnesium Oxide Stripes

TMA/MgCp₂/TMA/MgCp₂/H₂O

2 MgO stripes formed

ZnO Stripe in Silica Gel

TMA/DEZ/H₂O

 Stripe coating works in other porous media

2) Surface Poisoning

- control spatial location of dopants in a host

Angel Yanguas-Gil

- A. Yanguas-Gil and J. W. Elam, ECS Trans. **33** (2), 333 (2010).
- A. Yanguas-Gil and J. W. Elam, Chemistry of Materials, **23** (19), 4295-4297, (2011).

What Limits Conductivity in Transparent Conducing Oxides (TCOs)?

- Doping efficiency decreases with increasing Sn content
- Additional Sn forms non-conducting Sn-O-Sn clusters
 - Want a more uniform dispersion of SnOx
 - For ALD TCOs, need a *lower* SnO₂ growth rate

Why lower the ALD dopant growth rate?

5% ALD ITO:

Achieve a more uniform SnOx dispersion

How? - surface poisoning

Strategy: Surface Poisoning

- Growth rate *modulated* by poisoning step
- Initially focus on single-component material: Al₂O₃
- Use alkyl alcohols (ROH) as poison

QCM Measurements of EtOH/H₂O on Al₂O₃

- H₂O displaces EtOH
- EtOH displaces H₂O

Mechanism for ROH Adsorption on Al₂O₃

QCM of Al₂O₃ ALD Using EtOH/TMA/H₂O

Al₂O₃ grows more slowly with the EtOH

QCM Pulse Structure During EtOH/TMA/H₂O

- Mass is gained during TMA exposures
- This mass gain is *smaller* following EtOH

Self-limiting TMA Reaction During EtOH/TMA/H₂O

- EtOH/TMA/H₂O is self-limiting
- No growth from EtOH/TMA
- Nominal growth from EtOH/H₂O/TMA/H₂O

Summary of Surface Poisoning Using TMA

- Many organic compounds act as growth inhibitors
- Wide range of Al₂O₃ ALD growth rates

Growth Modulation for Other Precursors

Surface poisoning works with many ALD materials

32

Application: Aluminum-Doped ZnO

- AI:ZnO with and without EtOH poisoning
- Measure doping efficiency

 2x higher doping efficiency with surface poisoning

3) Precursor Synergy

- make precursors cooperate

Joseph A. Libera

• J. A. Libera, J. N. Hryn, and J. W. Elam, Chemistry of Materials (2011).

34

In₂O₃ ALD using Ozone

ALD ITO in nanopores (AR=300) for solar cells:

 $\square \text{InCp} + \text{O}_3 \rightarrow \text{In}_2\text{O}_3 \quad (In^{+1} \rightarrow In^{+3})$

In₂O₃ films were thinner downstream in reactor

 $\blacksquare O_3 \xrightarrow{\ln_2 O_3} O^* + O_2$

Indium oxide catalyzes ozone destruction

35

Scale-up of ALD ITO using Large Substrate Reactor

 From 1x1-in plates to 12-in x 18-in plates

Spatial Uniformity of ALD ITO Using InCp/O₃

- Very poor uniformity (± 45%)
- In₂O₃-catalyzed decomposition of O₃
- Can we develop an ALD process that does not require O₃ ?...

Different Oxygen Sources for In₂O₃ ALD with InCp

• \ln_2O_3 ALD does not work with either O_2 or H_2O alone

Simultaneously dosing O₂ and H₂O allows In₂O₃ ALD

Growth of ALD In_2O_3 using $InCp/(H_2O+O_2)$

- High growth rates, 1.0-1.6 Å/cycle
- H₂O and O₂ can be supplied simultaneously or in sequence
- Order is not critical
- What is the mechanism?
- Why are both H₂O and O₂ required?

Proposed Mechanism for In₂O₃ ALD

- InCp: HCp release
 - QCM and QMS: 90%

Scale-up of ALD In₂O₃ to 12" x18" Substrates

4) Nanobowls

- engineer catalytic environments

Junling Lu

Christian Canlas

- J. Lu et. al., Science, **335**, 1205 (2012).
- C. Canlas et. al., Nature Chemistry 4, 1030, (2012).

- Control composition and relative position of multiple catalytic species
- Impart shape-selectivity
- Stabilize catalyst

Al₂O₃ Nanobowls on TiO₂: Shape Selective Photocatalysis

Nanobowls on TiO₂ Photocatalyst

Relative Rates of Photocatalytic Oxidation on Nanobowl Catalysts

 Remarkable selectivity for BZ after ~5 ALD Al₂O₃ Cycles

Conclusions- Why look beyond A/B/A/B...?

Acknowledgements

J. Libera, A. Yanguas-Gil, J. Lu, C. Canlas, A. Mane, H. Meng, Y. Lei, S. Jokela, S. Mohney, A. Martinson, J. Hupp, M. Pellin, J. Hryn, A. Hryn, A. Xu, J. Notestein, P. Stair, C. Marshall

Questions?

