
ALD at Georgia Tech IEN

Georgia Institute for Electronics Tech and Nanotechnology

NNIN

John Pham johnpham@gatech.edu

Cambridge Nanotech Fiji F202 ALD

- Dual chamber
 - Right: oxides/nitrides
 - Left: metals (& oxides backup)
- Plasma/Thermal
 - 300W / up to 500C (chuck)
- Manual load-lock
- 10 precursor ports
 - Oxides: Al₂O₃ HfO₂ ZrO₂ ZnO TiO₂
 - Nitrides: TiN AIN HfN ZrN
 - Metal: Pt

Fig 1. Plasma ALD, installed Aug 2010

Home-built thermal ALD

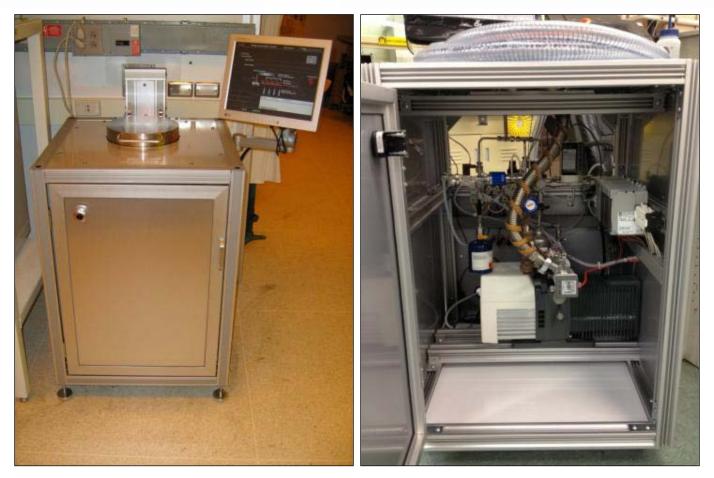
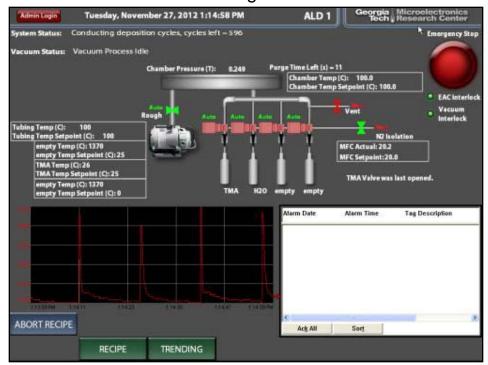


Fig 2. Home-built ALD


Fig 3. Internals of ALD

http://cleanroom.ien.gatech.edu/

Home-built thermal ALD

- Chamber easily disassembled
- <\$15k, 2 days to assemble</p>
- Reduced cross-contamination
 - Al₂O₃ available only
- Up to 250**C**
 - Viton lid o-ring
 - Stainless steel chamber
- Up to 4 precursors

Georgia Tech Microelectronics Research Center

Fig 4. Touchscreen Interface

User Activity

- Aug 2010-Nov 2012:
 - 92 unique users
 - 9,000+ hrs
- Oxide/nitride chamber heavily used
- Metals chamber, not so much
- ALD2 for instructional center
 - hands-on fabrication classes
- ALD1 for AI_2O_3
 - No cross contamination (only TMA/H₂O installed)

Applications of ALD @ GT

- Gate dielectric
- Nano-porosity size reduction
- ALD on Graphene
- Environmental barrier for organic electronics
 - Polymer solar cells
 - OLEDs
- Anti-reflective coating
- Nano-generator (ZnO on CNT)

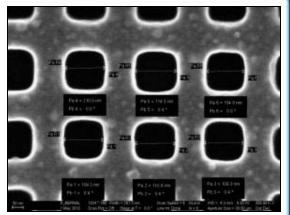


Fig 5. Porous grid for PZT nano pillar fabrication

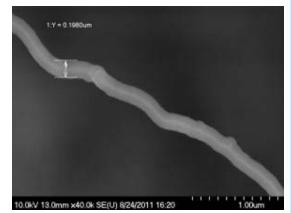


Fig 6. 20nm ZnO on individual CNT. CNT is indicated by arrows.

Hardware Issues

- Chuck temperature cooling
 - Slow (250C to 100C)
- Cross-contamination
 - Gate dielectrics (contaminated by other nitrides and possibly ZnO)
- Manual load-lock operation
- Metal ALD precursor
 - Cost, availability, nucleation delay

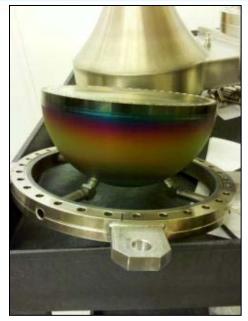
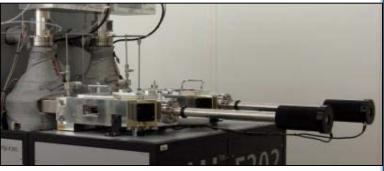



Fig 7. Heated Chuck

Fig 8. Manual load-lock

Georgia Institute for Electronics Tech and Nanotechnology

http://cleanroom.ien.gatech.edu/