Atomic Layer Deposition at ASU NanoFab

S. Myhajlenko and A. Handugan Arizona State University

NNIN ALD Symposium, Harvard November 29th, 2012

Current ALD Capability

- Cambridge Nanotech Savannah one unit
- Available chemical precursors
 - Trimethyl Aluminum (Al₂O₃)
 - Diethylene Zinc (ZnO₂)
 - Tetrakis (dimethlamino) Hafnium(HfO₂)
- First film (Al₂O₃) deposited on 9/27/2012
 c/o J Provine & M. Rincon (Stanford)
 Growth rate 0.88 Å/cycle (15 ms dose)
- HfO2 deposition (10 ms dose)
 - Growth rate 0.95 Å/cycle

Al₂O₃ Growth Rate

NNIN ALD Symposium, Harvard 11/29/2012

Equipment Issues

- TDMA- Hf pre-cursor needs heater jacket at 75 °C
 - Always have to enter this set point thru GUI otherwise heater doesn't come on
- We have APS UPS and every time we login we get the following dialog box
 - "Do you want to allow the following program to make changes to this computer?"
- After launching the tool software, we frequently get the following error
 - USB ERROR/From Command: MPUSBWrite/Called from Savannah.vi
 - Power cycling the circuit breakers on the front of the tool rectifies this error?
- One run aborted during a Windows update
 - Is this common?
- Over pressure abort (> 1 Torr) when we first ran HfO₂
 - Reducing the dose from 15 ms to 10 ms fixed the problem
 - But this value is faster than the valve can operate?
- Cambridge Nanotech support
 - No response to email sent 11/19/2012 and web site access denied.....
- Equipment Usage Level
 - very low % since we're still evaluating the tool

Future Plans

- Film characterization thickness is relative since based on pre-existing optical models loaded in Woollam ellipsometer
 - Refractive index (need to determine independently)
- Thin Al₂O₃ hard mask for nanolithography application
 - Preliminary RIE (Cl/Ar) sputter etch data of 20 nm/min vs. 120 nm/min for PMMA is promising.
- Looking to add TiO₂ capability in the near future
- Proposal has been submitted for GdO₂, Ta₂O₅, and WO₃
 - Application as dielectric stack for programmable memory cells