Atomic Layer Deposition at the Stanford Nanofabrication Facility

J Provine & Michelle Rincon November 29, 2012 NNIN ALD Workshop

ALD Equipment @ SNF all Cambridge Nanotech

Equipment	Online	Cleanliness	Comments	
savannah	Fall 2009	MOS until summer 2012 now open	Metal oxides only currently. Previously a lot of metal nitride work	
fiji1	Summer 2011	MOS clean	One half of a F202 system; metal oxides, metal nitrides, and BEOL MOS metals	
fiji2	Summer 2012	Open to "all materials"	Heavy utilization (80% or more of 24/7); metal oxides, metal nitrides, metals	
fiji3	Winter 2013	Open to "all materials"	Oxide only processing; also to meet capacity demand of fiji2	
Savannah-mvd	Winter/Spring 2013	Open to "all materials"	 Incorporated into a glovebox Plasma cleaner also in glovebox Molecular Vapor Deposition 	

Films available @ SNF — Extensive Characterization

- Al₂O₃
 - Thermal (TMA + H_20)
 - Plasma (TMA + O₂ plasma)
- HfO₂
 - Thermal (TDMA-Hf + H_20)
 - Plasma (TDMA-Hf + O₂ plasma)
- TiO₂
 - Thermal (TDMA-Ti + H_20)
 - Plasma (TDMA-Ti + O₂ plasma)
- ZrO_2
 - Thermal (TDMA-Zr + H_20)
 - Plasma (TDMA-Zr + O₂ plasma)
- **SiO₂** (Plasma 3DMAS + O₂ plasma)
- Pt
 - Thermal (Me(CpMe)Pt + O_2)
 - Plasma (Me(CpMe)Pt + O₂ plasma (+ H₂ plasma))
- TiN
 - Thermal (TDMA-Ti + NH₃)
 - Plasma (TDMA-Ti + N₂ plasma)
 - Plasma (TDMA-Ti + NH₃ plasma early stages)

- ZnO
 - Thermal (DEZ + H_2 0)
- Ta₂O₅
 - Thermal (TDEMATB-Ta + H_2 0)
 - Plasma (TDEMATB-Ta + O₂ plasma)

Films available @ SNF – Demonstrated Deposition

- HfN (Hf₃N₄ really)
 - Thermal (TDMA-Hf + NH₃)
 - Plasma (TDMA-Hf + N₂ plasma)
- WO_x
 - Thermal (BTDBMA-W + H_2O)
 - Plasma (BTDBMA-W + O₂ plasma)
- WN
 - Thermal (BTDBMA-W + NH₃)
 - Plasma (BTDBMA-W + N₂ plasma)
- Ru
 - Thermal ((CpEt)Ru + O_2)
- SnO
 - Thermal (TDMA-Sn + H2O2)
- InO
 - Thermal (CpIn + H_2O)
- **ITO** (see above)
- Y2O3 (!)
 - Thermal (Me(3MeCp)Y + H₂O or Me(2MeEtCp)Y + H₂O)

- YSZ (yttria + zirconia)
- AZO (see above)
- NiO_x
 - Thermal (nickelocene + H₂O)
 - Ni from H₂ plasma reduction
- FeO_x
 - Thermal (ferrocene + H₂O)
 - Fe from H₂ plasma reduction
- AIN
 - Plasma (TMA + N₂ plasma)
- SrO
 - Thermal (MeCpSr + H₂O)
- SiO_2
 - Thermal (tert-butoxy silanol + TMA)
 - YIKES!!! discontinued.

Films @ SNF – Wish List

- TaN
- Ti
- Plasma Ru (better nucleation)
- W
- Y₂O₃
- Ideally want to support anything requested

ALD Issues Pareto (last 6 months)

Primary Issues

- Primary issues related to Fiji load arms.
 - Most issues related to user error.
 - Fiji2 loading arm required refurbishment after being bent by user.
 - After summer break there was a large spike in errors. Once users re-familiarized themselves with loading process, error frequency dropped.
 - Setting screws to secure loading arm height also tend to drift and re-calibration of arm height is second most common error.
 - Fortunately these errors are relatively easy to recover from and result in minimal equipment downtime.

Tool Usage

Maintenance Schedule

Savannah

- Reset pressure gauge (2x/yr)
- Pump rebuild (1/yr); change oil (2x/yr)
- Kalrez O-Ring (1/yr)
- Chamber CO₂ clean: 1/yr (during shutdown)
- Manifold clean: 4µm of film (coming soon)

Fiji

- Sample holder clean: As needed (~2X/year)
- Load Arm refurbishment: Recommended 1/year
- Chamber clean: haven't done yet
- Manifold clean: 4μm of film

Additions to system

- We added a boost system in fall 2012 to aid with low volatility precursors
 - Similar to a bubbler
 - Very positive results (SrO and Y₂O₃)
 - Desire to add to more chambers
- Wish list
 - In situ film measurement
 - QCM
 - Ellipsometry (not really possible in several of our systems)
 - Ozone

Found deposition rate @ 200 °C: ~0.99 A/cycle

Deposition rate decreases with temperature increase

 Dielectric constant is extracted from accumulation capacitance & measured dielectric thickness

Cycles	Dielectric Constant (k)	
50	6.30	
100	6.77	
150	6.74	
200	6.76	

·Deposition temperature: 200 °C

Extracted dielectric constant: ~6.75

Other well characterized metal oxides

- Similar data is available at the tool's website
 - Example HfO₂

Average Dielectric Constant: 15.27

Average Doping Concentration: 1.5 x 10¹⁶ /cm³

Hysteresis Range: 230mV-285mV

Mobile Charge Range: $8x10^{11} / 1.4x10^{12} / cm^2$

 Dielectric Constant (k), doping type and concentration were extracted at 1MHz.

Pt and Nucleation

Thermal Pt from MeCpPtMe₃ and O₂

Pt and Nucleation

Plasma Pt from MeCpPtMe₃ and O₂

Pt and Nucleation

Plasma Pt from MeCpPtMe₃ and O₂

Plasma ALD Pt on Al₂O₃

Plasma ALD Pt on thermal SiO₂

TiN: Thermal vs Plasma

- Oxygen content kills conductivity of TiN
- With savannah we never saw less than 15% atomic weight in oxygen (m Ω -cm level resistivity)
- Switching to plasma in fiji 1% oxygen and best result is $10\mu\Omega$ -cm resistivity
- How well can the load locked, higher temp fiji do for thermal TiN?

Open questions of interest

- How to handle ZnO?
- General contamination concerns...
 - Sulfide ALD for instance
- Utilizing the tool for non-ALD projects
- Coating of powders and loose material
- Training and theory background for users
- Anyone with a fiji: load transfer arms

Thank you.
Any questions?