Atomic Layer Deposition at the Stanford Nanofabrication Facility J Provine & Michelle Rincon November 29, 2012 NNIN ALD Workshop # ALD Equipment @ SNF all Cambridge Nanotech | Equipment | Online | Cleanliness | Comments | | |--------------|--------------------|--------------------------------------|---|--| | savannah | Fall 2009 | MOS until
summer 2012
now open | Metal oxides only currently. Previously a lot of metal nitride work | | | fiji1 | Summer 2011 | MOS clean | One half of a F202 system; metal oxides, metal nitrides, and BEOL MOS metals | | | fiji2 | Summer 2012 | Open to "all materials" | Heavy utilization (80% or more of 24/7); metal oxides, metal nitrides, metals | | | fiji3 | Winter 2013 | Open to "all materials" | Oxide only processing; also to meet capacity demand of fiji2 | | | Savannah-mvd | Winter/Spring 2013 | Open to "all materials" | Incorporated into a glovebox Plasma cleaner also in glovebox Molecular Vapor Deposition | | # Films available @ SNF — Extensive Characterization - Al₂O₃ - Thermal (TMA + H_20) - Plasma (TMA + O₂ plasma) - HfO₂ - Thermal (TDMA-Hf + H_20) - Plasma (TDMA-Hf + O₂ plasma) - TiO₂ - Thermal (TDMA-Ti + H_20) - Plasma (TDMA-Ti + O₂ plasma) - ZrO_2 - Thermal (TDMA-Zr + H_20) - Plasma (TDMA-Zr + O₂ plasma) - **SiO₂** (Plasma 3DMAS + O₂ plasma) - Pt - Thermal (Me(CpMe)Pt + O_2) - Plasma (Me(CpMe)Pt + O₂ plasma (+ H₂ plasma)) - TiN - Thermal (TDMA-Ti + NH₃) - Plasma (TDMA-Ti + N₂ plasma) - Plasma (TDMA-Ti + NH₃ plasma early stages) - ZnO - Thermal (DEZ + H_2 0) - Ta₂O₅ - Thermal (TDEMATB-Ta + H_2 0) - Plasma (TDEMATB-Ta + O₂ plasma) # Films available @ SNF – Demonstrated Deposition - HfN (Hf₃N₄ really) - Thermal (TDMA-Hf + NH₃) - Plasma (TDMA-Hf + N₂ plasma) - WO_x - Thermal (BTDBMA-W + H_2O) - Plasma (BTDBMA-W + O₂ plasma) - WN - Thermal (BTDBMA-W + NH₃) - Plasma (BTDBMA-W + N₂ plasma) - Ru - Thermal ((CpEt)Ru + O_2) - SnO - Thermal (TDMA-Sn + H2O2) - InO - Thermal (CpIn + H_2O) - **ITO** (see above) - Y2O3 (!) - Thermal (Me(3MeCp)Y + H₂O or Me(2MeEtCp)Y + H₂O) - YSZ (yttria + zirconia) - AZO (see above) - NiO_x - Thermal (nickelocene + H₂O) - Ni from H₂ plasma reduction - FeO_x - Thermal (ferrocene + H₂O) - Fe from H₂ plasma reduction - AIN - Plasma (TMA + N₂ plasma) - SrO - Thermal (MeCpSr + H₂O) - SiO_2 - Thermal (tert-butoxy silanol + TMA) - YIKES!!! discontinued. ## Films @ SNF – Wish List - TaN - Ti - Plasma Ru (better nucleation) - W - Y₂O₃ - Ideally want to support anything requested ## ALD Issues Pareto (last 6 months) ## **Primary Issues** - Primary issues related to Fiji load arms. - Most issues related to user error. - Fiji2 loading arm required refurbishment after being bent by user. - After summer break there was a large spike in errors. Once users re-familiarized themselves with loading process, error frequency dropped. - Setting screws to secure loading arm height also tend to drift and re-calibration of arm height is second most common error. - Fortunately these errors are relatively easy to recover from and result in minimal equipment downtime. # Tool Usage ### Maintenance Schedule #### Savannah - Reset pressure gauge (2x/yr) - Pump rebuild (1/yr); change oil (2x/yr) - Kalrez O-Ring (1/yr) - Chamber CO₂ clean: 1/yr (during shutdown) - Manifold clean: 4µm of film (coming soon) #### Fiji - Sample holder clean: As needed (~2X/year) - Load Arm refurbishment: Recommended 1/year - Chamber clean: haven't done yet - Manifold clean: 4μm of film ## Additions to system - We added a boost system in fall 2012 to aid with low volatility precursors - Similar to a bubbler - Very positive results (SrO and Y₂O₃) - Desire to add to more chambers - Wish list - In situ film measurement - QCM - Ellipsometry (not really possible in several of our systems) - Ozone Found deposition rate @ 200 °C: ~0.99 A/cycle Deposition rate decreases with temperature increase Dielectric constant is extracted from accumulation capacitance & measured dielectric thickness | Cycles | Dielectric Constant (k) | | |--------|-------------------------|--| | 50 | 6.30 | | | 100 | 6.77 | | | 150 | 6.74 | | | 200 | 6.76 | | ·Deposition temperature: 200 °C Extracted dielectric constant: ~6.75 ### Other well characterized metal oxides - Similar data is available at the tool's website - Example HfO₂ Average Dielectric Constant: 15.27 Average Doping Concentration: 1.5 x 10¹⁶ /cm³ Hysteresis Range: 230mV-285mV Mobile Charge Range: $8x10^{11} / 1.4x10^{12} / cm^2$ Dielectric Constant (k), doping type and concentration were extracted at 1MHz. ## Pt and Nucleation #### Thermal Pt from MeCpPtMe₃ and O₂ ## Pt and Nucleation #### Plasma Pt from MeCpPtMe₃ and O₂ ## Pt and Nucleation #### Plasma Pt from MeCpPtMe₃ and O₂ Plasma ALD Pt on Al₂O₃ Plasma ALD Pt on thermal SiO₂ ### TiN: Thermal vs Plasma - Oxygen content kills conductivity of TiN - With savannah we never saw less than 15% atomic weight in oxygen (m Ω -cm level resistivity) - Switching to plasma in fiji 1% oxygen and best result is $10\mu\Omega$ -cm resistivity - How well can the load locked, higher temp fiji do for thermal TiN? ## Open questions of interest - How to handle ZnO? - General contamination concerns... - Sulfide ALD for instance - Utilizing the tool for non-ALD projects - Coating of powders and loose material - Training and theory background for users - Anyone with a fiji: load transfer arms Thank you. Any questions?