

ALD Capabilities at Penn State Bangzhi Liu Penn State Nanofab

4 ALD tools: 2 thermal & 2 plasma

Thickness measurement and mapping

Woollam 2000X focused beam Ellipsometer

ALD processes on Savannah 200

	T (°C)	300	250	200	170	150	120	110	100	80	60	50
Regular chamber (6.5 mm tall)	Al ₂ O ₃	<mark>0.85</mark> /1.65	1.0 /1.65	1.03 /1.65	1.04 /1.63	1.08 /1.65			0.93 /1.55	0.96		0.82 /1.60
	HfO ₂		1.14 /2.07	0.95 /2.02				1.16				
	TiO ₂					0.44 /2.29				0.7		
	ZnO ₂			1.35 /2.11			1.83			1.49	1.28	
	ZrO ₂			0.97 /2.05								
	Ta ₂ O ₅			0.55 /1.72								
	AZO								20			
Tall chamber (13 mm tall)	Al ₂ O ₃			1.03 /1.64							+2+1-	•

ALD processes on Lesker LE

I O									
		T (°C)	300	250	200	150	120	110	100
A Ru	IT L Lesker	Al ₂ O ₃	<mark>0.84</mark> /1.61	0.88 /1.63	0.93 /1.66	0.96 /157		0.75 /1.57	0.76 /1.62
	LD-150L	HfO ₂		0.97 /2.11	0.98 /2.05	1.10 /2.04			
	process	TiO ₂				0.43 /2.00			
		Ta ₂ O ₅	0.47 /1.75		0.53 /1.99	0.63 /1.98	0.78 /1.93		
	Long water pulse(1.6s)	Al ₂ O ₃			1.06	1.03 /1.61		0.78 /1.6	0.93 /1.66
	EXPO	Al ₂ O ₃			1.22				
		Ta ₂ O ₅			0.65 /2.03				

ALD processes on Lesker Cluster LX150

		Т (°С)	350	300	250	200	120	110	100
	Thermal	Al ₂ O ₃		<mark>0.85</mark> /1.64		0.91 /1.65			
	Long water pulse(1.6s)	Al ₂ O ₃						0.95 /1.6	
		Al ₂ O ₃		0.84 /1.63		1.06 /1.66			
	Plasma process	HfO ₂				1.09 /2.02	1.23 /2.00		
		SiO ₂		0.96 /1.41					
		TiN	0.40 /165 μΩ cm	0.41 /379 μΩ cm					
1 HAN		AIN			0.58 /1.96	0.69 /1.93			
		GaN							1.14 /1.86
		Pt		0.6-0.8 /11 cyl (Nucl delay)					

Comparison between different systems

	Т (°С)	Savannah thermal	LE thermal	Cluster thermal	Cluster Plasma
Al2O3	300	0.85	0.84	0.85	0.84
	200	1.03	0.93		1.06
HfO ₂	200	0.95	0.98		1.09
Ta ₂ O ₅	200	0.55	0.53		
TiO2	150	0.44	0.43		

Different gas flow design from Savannah

- Inactive gas flow is continuous, viscous and laminar precursor gas/vapor periodically pulsed through
- Net direction of flow is perpendicular to substrate surface

CV measurement of MOSCAP for HfO2

with thicknesses of 1.0, 1.2 & 1.7 nm EOT

Steep slope & small frequency dispersion indicative of very low interface trap density (D_{it} < 10¹¹ cm⁻² eV⁻¹) Indicating a high dielectric constant (k ~22) and thin interfacial oxide thickness (~0.6 nm) required for aggressive device scaling (1 nm EOT)

How thick a cylinder of 25 gram TMA can deposit Al2O3 film on Savannah?

8 um

1 um Al₂O₃ on fiber

Regular thermal Al₂O₃ process on Savannah

Coating multiple wafers on Savannah

Al2O3 170C 700 cycles 2X 4" double side polished Si wafers Si spacer: 0.7mm

Precursor overtemperature damage

Tetrakis(dimethylamido)zirconium, TDMAZr,

Tetrakis(dimethylamino)tin(IV)

Pentakis(dimethylamido)tantalum

TDMAZr forms a yellowish thin crust on top when overheated The precursor can be reused when poking through the crust

Better temperature control using self adhesive thermocouple & heating tape

Stable Ta₂O₅ process Ta₂O₅ static 200C 100 cycles

GPC: 0.63 A/cycle Substrate: 150 mm Si Native oxide: 1.15 nm 180911

Ta₂O₅ static 200C 150 cycles

GPC: 0.64 A/cycle Substrate: 150 mm Si Native oxide: 1.15 nm 190605

<d>: 95.9 ± 0.5Å (0.5% uniformity)

<d>: 63.23 ± 0.4 A (0.6% uniformity)

PEALD Pt process

Curtesy: Bruce Rayner-KJ Lesker

Thickness measurement of Pt film 100 cycles of Pt deposition

Drude model good for conductive film: Pt & TiN

Layer Commands: Add Delete Save Include Surface Roughness = <u>OFF</u> Layer # 2 = <u>Gen-Osc</u> Thickness # 2 = <u>117.96 Å</u> (fit) Add Oscillator Show Dialog Fast Gaussian Calc = <u>ON</u> Einf = <u>2.387</u> (fit) UV Pole Amp. = <u>0.0000</u> UV Pole En. = <u>11.000</u>

IR Pole Amp. = <u>0.0000</u>

- Fit All Clear All Add Amp. Add Br. Add En.
- 1:
 Type = Drude(RT)
 Resistivity (Ohm⋅cm)1 = 0.00023159 (fit)
 Scat. Time (fs)1 = 0.518 (fit)

 2:
 Type = Lorentz
 Amp2 = 0.640632 (fit)
 Br2 = 0.1750 (fit)
 En2 = 3.126 (fit)

 3:
 Type = Lorentz
 Amp3 = 4.595097 (fit)
 Br3 = 3.2924 (fit)
 En3 = 7.030 (fit)
- 4: Type = Lorentz Amp4 = 3.111312 (fit) Br4 = 2.6162 (fit) En4 = 5.071 (fit)
- Layer # 1 = NTVE_JAW Native Oxide = 11.80 Å
- Substrate = SI_JAW

200 cycle Pt deposition on Si & trenches

Does Permeation through O-ring affect ALD process?

TiN thickness mapping shows gradient related to air permeation

Air permeation

Air permeation

975W, 300 cycles, 300C GPC: **0.394** Å**/cycle Substrate:** 150 mm Si Native oxide: 1.18 nm TiCl4 + H2:N2 plasma (3:1 ratio) Process Pressure: ~1.150 Torr Substrate <u>heater</u> temperature: 400C (~321C using carrier) TiCl4 Dose/purge: 0.1 sec/3 sec Plasma Dose/purge: 9 sec/5 sec Cycle Time: ~17 seconds

Solution: Double O-rings & differential pumping

Curtesy: Bruce Rayner-KJ Lesker

Effect of differential pumping on TiN growth

Air permeation

PennState Materials Research

Institute

Air permeation

GPC: 0.32 Å/cycle

GPC: 0.39 Å/cycle

ping w/ differential pumping (LX150)

w/o differential pumping (Cluster LX150)

XPS confirms extremely low O in TiN

Curtesy: Bruce Rayner-KJ Lesker

BCl3 gas delivery system for BN deposition BCl3: toxic & corrosive

Gas delivery in basement

BCl₃ gas delivery system for BN deposition

Pulse height tuning using N₂

Peak height is controlled by regulator Steady sate flow is controlled by metering valve

Thank you!