MOCVD enables cutting-age applications

Dr. Xiaoqing Xu Stanford Nanofabrication Facility, Stanford University

Tere 1

Today's SNF is a collection of shared lab spaces

- The Cleanroom (green): "Classic" fab, Si CMOS process plus some "dirty" processes for flexibility.
- ExFab: Flexible/fast fab, beyond electronics, beyond silicon. 3D printing, microfluidic, advanced lito et al.
- MOCVD lab (left): GaAs and GaN, doped and intrinsic films/nanostructures on III-V, silicon and sapphire.
- SPF (blue): Systems Prototyping facility for designing & assembling boards and systems.
- Wide Band Gap Lab: Construction is underway for WBG materials processing and characterization.
- Open to all, ~500 active users, ~70% from internal/external academia, ~30% from industry

No longer a monolithic cleanroom, today's SNF is a collection of lab spaces, enabling:

- Flexibility, by adapting spaces to meet dynamically changing research needs
- Experimentation, by tailoring spaces with capabilities & rates to serve different target audiences.

2019/12/12

Outline

- MOCVD introduction
- MOCVD enabled applications and related research at Stanford
 - VCSEL (Vertical-Cavity Surface-Emitting Laser)
 - HEMT (High Electron Mobility Transistor)
 - LED (Light Emitting Diode)
 - Solar energy conversion
- Emerging substrate techniques
 - GaN and GaAs substrate challenges
 - Research on re-use substrates

SNF MOCVD lab (986.9hr charged hours in 2018)

AIXTRON 200/4 III-V MOCVD

Temperature up to 800°C

In,AI,Ga-As,P,(dilute nitride) epitaxial films and nanostructures, n-, p-type doing

AIXTRON CCS III-N MOCVD

Temperature up to 1300°C

In,AI,Ga-N epitaxial films and n-, p-type doing

Stanford University

VCSEL for mobile phone

iphone X started face ID

The **flood illuminator** shines infrared light at your face, which allows the system to detect whoever is in front of the iPhone, even in low-light situations or if the person is wearing glasses (or a hat). Then the **dot projector** shines more than 30,000 pin-points of light onto your face, building a depth map that can be read by the infrared camera

MOCVD → GaAs based VCSEL → (vertical-cavity surface-emitting laser)

https://www.computerworld.com/article/3235140/apples-face-id-the-iphone-xs-facial-recognitiontech-explained.html

Material capability of MOCVD

MOCVD/MOVPE Growth Mechanisms

A simple example

Take GaN growth for example, the V and III precursors are TMGa and NH_3 , respectively.

Pyrolysis

$$Ga(CH_3)_3(v) \Rightarrow Ga(CH_3)_2(v) + CH_3(v)$$
(3)

$$Ga(CH_3)_2(v) \Rightarrow GaCH_3(v) + CH_3(v)$$
 (4)

$$GaCH_3(v) \Rightarrow Ga(v) + CH_3(v)$$
 (5)

$$NH_3(s/v) \Rightarrow NH(3-x)(s/v) + xH(s/v)$$
 (6)

Interface Reaction

$$GaCH_3(s/v) + NH(s/v) \Rightarrow GaN(s) + 1/2H_2$$
(7)

Adduct formation

$$TMGa + NH_3 \Rightarrow TMGa - NH_3$$
 (8)

MOCVD/MOVP-Epitaxy Schematic

Device application background

LED

Laser

HBT (heterojunction bipolar transistor) &HEMT(High-electron-mobility transistor)

New sensor systems for extreme harsh environments

Outline

- MOCVD introduction
- MOCVD enabled applications and related research at Stanford
 - VCSEL (Vertical-Cavity Surface-Emitting Laser)
 - HEMT (High Electron Mobility Transistor)
 - LED (Light Emitting Diode)
 - Solar energy conversion
- Emerging substrate techniques
 - GaN and GaAs substrate challenges
 - Research on re-use substrates

MOCVD hot field-1. VCSEL

Structure diagram of VSCEL

(b)

(a)

https://www.enlitechnology.com/show/semiconductor.htm

Structure of DBR

50 nm

Double QW

(junction layer)

Top contact Laser aperture DBR stack DBR stack Under the stack of the

Apple iPhone X Teardown

ß

Apple iPhone X Opened View ©2018 by System Plus Consulting

VCSEL for mobile phone

VCSELs vs. LEDs, Edge Emitters

All sources are grown by either MOCVD or MBE

13

VCSEL for Lidar

Parameters	Lidar	RADAR	Camera
Range	High	High	Very Low
Field of View	High	Low	Very Low
3D Shape	High	Low	Very Low
Obj. Rec @ Long Range	High	Low	Very Low
Accuracy	High	Low	Low
Rain, Snow, Dust	High	High	Low
Fog	Medium	High	Low
Night time	High	High	Low
Read Signs & See Color	Medium	Low	High

https://automotive.electronicspecifier.com/sensors/what-is-driving-the-automotive-lidar-and-radar-market

VCSEL Research at Stanford: GaAs based long wavelength VCSELs

20 X GaAs/Al_{0 90}Ga_{0 10}As Si Doped N DBR **Tunnel Junction** Oxidation Layer 3 X GalnNAsSb/GaNAs QWs 4.5 X Al_{0.90}Ga_{0.10}As/GaAs Si Doped N DBR 32 X AlAs/GaAs Si Doped N DBR

Li Zhao, PhD thesis, Stanford University, 2019

Outline

- MOCVD introduction
- MOCVD enabled applications and related research at Stanford
 - VCSEL (Vertical-Cavity Surface-Emitting Laser)
 - HEMT (High Electron Mobility Transistor)
 - LED (Light Emitting Diode)
 - Solar energy conversion
- Emerging substrate techniques
 - GaN and GaAs substrate challenges
 - Research on re-use substrates

Scanning electron micrograph cross section of an eGaN FET

5

GaN HEMT for lidar

Si power switch

GaN power switch

Alex Lidow, "How eGaN FETs and IC Technology Improves Lidar performance", 2018 APEC

S

GaN HEMT for smaller charger

S

GaN HEMT for wireless charging

HEMT Research at Stanford: 1. D-mode AlGaN/GaN HEMT on Si

(a) SEM cross section and (b) XRD pattern of the HEMT structure; (c) the PL mapping of the $Al_xGa_{1-x}N$ barrier and (d) the thickness mapping of the full HEMT structure.

			10.0
		N.	-7.5
NC 25 PM	-		-5.0
	Natio		12023
			-2.5
	7.5	1	-2.5 -0 .0.0 μm
2.5 5.0 Gan demo 24 sample Image Sta			о 0.0 µm
GaN DEMO 24 SAMPLE			0
Gan DEMO 24 SAMPLE Image Sta	itistics	<u>1x</u>	о 0.0 µm
Gan DEMO 24 SAMPLE Image Sta Img. Z range	itistics 1.099	<u>1x</u>	о 0.0 µm
Gan DEMO 24 SAMPLE Image Sta Img. Z range Img. Rms (Rq)	tistics 1.099 0.130	1x nm nm	о 0.0 µm
Gan DEMO 24 SAMPLE Image Sta Img. Z range Img. Rms (Rq) Img. Ra	1.099 0.130 0.104	1x nm nm nm nm	ο .0.0 μm

Image Statistics10x10µM

Img.	Z range	6.259 nm
Img.	Rms (Rq)	0.822 nm
Img.	Ra	0.650 nm
Img.	Rma×	6.259 nm
Img.	Srf. area	$100.00 \ \mu m^2$
Img.	Srf. area diff	0.0008 %

AFM image of GaN on Si

s

2019/12/12

Degradation of 2DEG transport properties after $600^\circ\,$ C annealing

Table: PL peak of $Al_{0.25}Ga_{0.75}N$ barrier for samples w/o Al_2O_3 passivation, before and after anneal in air/Argon

Sample	PL peak (nm)	
No passivation, no anneal	316.4	
Al2O3-passivated, no anneal	316.8	
NP_air	317.4	
NP_Argon	311.0	
P_air	313.3	
P_Argon	313.6	

Hou, Minmin, Sambhav R. Jain, Hongyun So, Thomas A. Heuser, <u>Xiaoqing Xu</u>, et al., Journal of Applied Physics 122, 195102 (2017).

Electron mobility (a) and sheet density (b) measured in the four groups of AlGaN/GaN samples over 5 hours of annealing

Degradation of 2DEG transport properties after 600° C annealing

Schematic illustration of the microstructural evolutions of the unpassivated and Al2O3-passivated AlGaN/GaN heterostructures at 600 $^\circ\,$ C in air and in argon.

Hou, Minmin, Sambhav R. Jain, Hongyun So, Thomas A. Heuser, <u>Xiaoqing</u> <u>Xu</u>, et al., Journal of Applied Physics 122, 195102 (2017).

HEMT Research at Stanford:

2. 3D inverted pyramidal AlGaN/GaN HEMT

SEM images of the inverted pyramidal silicon surfaces: (a) 40° tilted view and (b) zoomed-in view. SEM images of group III-nitride multilayers deposited on (c) planar silicon substrate and (d) inverted pyramidal silicon surface with (e)–(g) zoomed-in views at different positions.

> Hongyun So, et al., Appl. Phys. Lett. 108, 012104 (2016)

2019/12/12

Low-resistance gateless HEMT using 3D inverted pyramidal AIGaN/GaN surfaces

2019/12/12

Outline

- MOCVD introduction
- MOCVD enabled applications and related research at Stanford
 - VCSEL (Vertical-Cavity Surface-Emitting Laser)
 - HEMT (High Electron Mobility Transistor)
 - Micro LED (Light Emitting Diode)
 - Solar energy conversion
- Emerging substrate techniques
 - GaN and GaAs substrate challenges
 - Research on re-use substrates

MOCVD hot field-3. Micro LED

InGaN/GaN blue or green LED

Nick Rolston, coursework for PH240, Stanford University, Fall 2014

AlGaInP/GaInP MQW red LED

H.K. Lee, Solid-State Electronics 56 (2011) 79–84

Micro LED

Samsung 75-inch Micro LED display in 2019 SID

(Image: Samsung)

Micro LED advantages

	Mini LED and Micro LED				
	Mini LED	Micro LED			
Size	100-200 µ m	Under 100 µ m			
Application	LCD backlight, fine pitch display wall	Self-emitting display wall, micro-projection display wal			
Number of LEDs used (in a typical TV)	More than a thousand LEDs (for direct-lit LED backlight)	Millions of LEDs			
Schedule of mass production	2018 at the earliest	Probably 2019-2022			
Advantages	HDR, notch design, curved design	High luminous efficiency, high brightness, high contrast, high reliability, and short response time			
Difference with LCD in prices	20% higher than LCD panel prices	More than 3 times of LCD panel prices in the initial stage of mass production			

(Source: LEDinside)

Micro LED process concept

François Templier, Proc. SPIE 10918, Gallium Nitride Materials and Devices XIV, 109181Q (1 March 2019).

LED Research at Stanford: InGaN/GaN MQWs for green LED on Si

Stanford University

s

Electroluminescence

Ben Reeves and Ze Zhang, E241class report, Spring, 2018

Green LED color map

T-TMIn/III vs λ space for MQW LED Structures

Photoluminescence at 365nm incidence

Ben Reeves and Ze Zhang, E241class report, Spring, 2018

Outline

- MOCVD introduction
- MOCVD enabled applications and related research at Stanford
 - VCSEL (Vertical-Cavity Surface-Emitting Laser)
 - HEMT (High Electron Mobility Transistor)
 - Micro LED (Light Emitting Diode)
 - Solar energy conversion
- Emerging substrate techniques
 - GaN and GaAs substrate challenges
 - Research on re-use substrates

MOCVD hot field-4. Solar energy conversion

Natalya V. Yastrebova, Centre for Research in Photonics, University of Ottawa, April 2007, "High-efficiency multi-junction solar cells: Current status and future potential".

ß

- Photovoltaics

Solar energy conversion research at Stanford: GaAs NW Array for Photoelectrochemical Water Oxidation

Photoelectrochemical (PEC) cells

Sunlight in, fuel out → energy conversion & storage

GaAs nanowires protected with ALD nickel oxide

- GaAs: high efficiency photovoltaic material
- Nanowires: large surface area and efficient light absorption
- Nickel oxide: electrocatalytically active protection layer
 - Ni-Fe oxides have some of the lowest reported overpotentials for OER
 - Low resistance and reflectivity
 - ALD affords thin, uniform coating

SEM image of GaAs NW

ohmic contact

p/n-PEC (photoanode/cathode cell)

Adapted from Lewis et al., Chem Reviews 2010

2019/12/12

Non-aqueous measurement setup (no NiO coating)

- Non-corrosive environment and kinetically facile redox couple
- Current is generated when photon-induced minority charge carriers perform redox reactions at electrode surface

Adapted from Hu et al., Energy Environ. Sci. 2013

Joy Zeng^{*}, Xiaoqing Xu^{*}, Vijay Parameshwaran^{*}, 59th Electronic Materials Conference, June 2017, South Bend, Indiana

Aqueous (OER) measurement (36nm NiO coating)

Aqueous conditions - redox species are H₂O, H₂, and
Pt counter

Yeah, these are great applications! *Bu...t, cost??? Substrate, epilayer growth, fabrication, package and testing...*

Outline

- MOCVD introduction
- MOCVD enabled applications and related research at Stanford
 - VCSEL (Vertical-Cavity Surface-Emitting Laser)
 - HEMT (High Electron Mobility Transistor)
 - Micro LED (Light Emitting Diode)
 - Solar energy conversion
- Emerging substrate techniques
 - GaN and GaAs substrate challenges
 - Research on re-use substrates

MOCVD/MOVP-Epitaxy Schematic

Stanford Nanofabrication Facility

LED substrate cost

Stanford University

GaN and GaAs substrate in demand

2018-2024 emerging materials - Market revenue

(Source: Emerging Semiconductor Substrates: Market & Technology Trends 2019 report, Yole Développement, 2019)

Source: MRFR Analysis

Problems and possible directions

Homoepitaxy: Most bulk GaN techniques are immature and far from practical application; HVPE GaN is still too expensive; Bulk GaAs is also expensive, especially for low profit products like solar cell

Heteroepitaxy: cheaper but sacrifice growth quality; still need scale up to reduce cost

Reuse GaN/GaAs substrates->Laser lift off, or remote epitaxy?
Need suitable laser and low defect large scale bulk substrates
Growth on cheaper substrate-> GaN/GaAs growth on Si?
Need scale up, 8" and above
Need to improve growth quality on Si
Breakthrough in bulk GaN technique-> Ammonothermal growth?
Need larger diameter, 6" and above

Stanford substrate research: Laser liftoff of gallium arsenide thin films

Both as-grown and post-liftoff GaAs films are free of dislocations!

Garrett J. Hayes and Bruce M. Clemens, MRS Communications (2015), 5, 1–5

End of Talk

Thank you!

Questions?